Electron transfer from cytochrome c(2) to the reaction center: a transition state model for ionic strength effects due to neutral mutations.
نویسندگان
چکیده
Interprotein electron transfer plays an important role in biological energy conversion. In this work, the electron transfer reaction between cytochrome c(2) (cyt) and the reaction center (RC) was studied to determine the mechanisms coupling association and electron transfer. Previous studies have shown that mutation of hydrophobic residues in the reaction interface, particularly Tyr L162, changes the binding affinity and rates of electron transfer at low ionic strengths. In this study, the effect of ionic strength on the second-order electron transfer rate constant, k(2), between cyt c(2) and native or mutant RCs was examined. Mutations of hydrophobic and hydrogen bonding residues caused k(2) to decrease more rapidly with an increase in ionic strength. This change is explained with a transition state model by a switch from a diffusion-limited reaction in native RCs, where electron transfer occurs upon each binding event, to a fast exchange reaction in the Tyr L162 mutant, where dissociation occurs before electron transfer and k(2) depends upon the equilibrium between bound and free protein complexes. The difference in ionic strength dependence is attributed to a smaller effect of ionic strength on the energy of the transition state compared to the bound state due to larger distances between charged residues in the transition state. This model explains the faster dissociation rate at higher ionic strengths that may assist rapid turnover that is important for biological function. These results provide a quantitative model for coupling protein association with electron transfer and elucidate the role of short-range interactions in determining the rate of electron transfer.
منابع مشابه
Oxidation of cytochromes c and c2 by bacterial photosynthetic reaction centers in phospholipid vesicles. 1. Studies with neutral membranes.
The oxidation of cytochrome c2 by photosynthetic reaction center isolated from Rhodopseudomonas sphaeroides and incorporated into unilamellar phosphatidylcholine vesicles was found to be kinetically similar to that observed earlier for reaction centers in low detergent solution [Overfield, R.E., Wraight, C.A., & DeVault, D. (1979) FEBS Lett. 105, 137-142]. At low ionic strength the kinetics wer...
متن کاملContinuum electrostatic model for the binding of cytochrome c2 to the photosynthetic reaction center from Rhodobacter sphaeroides.
Electrostatic interactions are important for protein-protein association. In this study, we examined the electrostatic interactions between two proteins, cytochrome c(2) (cyt c(2)) and the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides, that function in intermolecular electron transfer in photosynthesis. Electrostatic contributions to the binding energy for the c...
متن کاملKinetic limitations in turnover of photosynthetic bacterial reaction center protein
The membrane-bound reaction center from purple nonsulfur photosynthetic bacterium Rhodobacter sphaeroides performs light-induced charge separation and exports two molecules of oxidized cytochrome and one molecule of fully reduced quinone (quinol) from two opposite (periplasmic and cytoplasmic) sites of the protein during a single turnover. The rate of the turnover was measured based on cytochro...
متن کاملTransient Kinetics of Electron Transfer Reactions of Flavodoxin: Ionic Strength Dependence of Semiquinone Oxidation by Cytochrome c, Ferricyanide, and Ferric Ethylenediaminetetraacetic Acid and Computer Modeling of Reaction Complexest
Electron transfer reactions between Clostridum pasteurianum flavodoxin semiquinone and various oxidants [horse heart cytochrome c, ferricyanide, and ferric ethylenediaminetetraacetic acid (EDTA)] have been studied as a function of ionic strength by using stopped-flow spectrophotometry. The cytochrome c reaction is complicated by the existence of two cytochrome species which react at different r...
متن کاملCytochrome c-lipid interactions: new insights from resonance energy transfer.
Resonance energy transfer (RET) from anthrylvinyl-labeled phosphatidylcholine (AV-PC) or cardiolipin (AV-CL) to cytochrome c (cyt c) heme moiety was employed to assess the molecular-level details of protein interactions with lipid bilayers composed of PC with 2.5 (CL2.5), 5 (CL5), 10 (CL10), or 20 (CL20) mol % CL under conditions of varying ionic strength and lipid/protein molar ratio. Monte Ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 48 48 شماره
صفحات -
تاریخ انتشار 2009